A263108 Semiprimes m such that the leftward cyclic permutation of its decimal digits is a larger semiprime.
15, 26, 39, 49, 58, 122, 129, 134, 141, 145, 155, 158, 159, 161, 177, 178, 183, 185, 187, 226, 254, 262, 298, 339, 341, 355, 358, 362, 371, 381, 391, 393, 394, 445, 451, 469, 473, 493, 497, 565, 581, 583, 586, 589, 674, 781, 791, 889, 895, 899, 1114, 1119
Offset: 1
Examples
Permute the digits of 15 = 3 * 5 to get 51 = 3 * 17. Permute the digits of 26 = 2 * 13 to get 62 = 2 * 31. Permute the digits of 122 = 2 * 61 to get 221 = 13 * 17. Permute the digits of 129 = 3 * 43 to get 291 = 3 * 97.
Links
- Zak Seidov, Table of n, a(n) for n = 1..28070 (all terms up to 10^6)
Programs
-
Mathematica
Select[Range[4, 1000000], 2 == PrimeOmega[#] == PrimeOmega[fd = FromDigits[RotateLeft[IntegerDigits[#]]]] && fd > # &] (* for b-file *)
Comments