cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263112 a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.

Original entry on oeis.org

0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)

Formula

a(n) = A007570(n) mod n.