cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263130 Least number such that the product of its digits in factorial base is n.

Original entry on oeis.org

1, 5, 21, 17, 633, 23, 36153, 65, 93, 635, 443122713, 71, 81474226713, 36155, 645, 113, 6069010670156313, 95, 2318037293294156313, 641, 36165, 443122715, 595774037991797891660313, 119, 4233, 81474226715, 453, 36161, 256727294482662730300616548940313, 647
Offset: 1

Views

Author

Paul Tek, Oct 10 2015

Keywords

Comments

The product of digits in factorial base is given by A208575.
All terms are odd.
Each prime number sets a new record.
a(p) = p*(p!) + Sum_{k=1..p-1} k! for any prime p.
a(n!) = A033312(n+1) for any n>0.
A208576(a(n)) = A208576(n)+1 for any n>1.

Examples

			The first terms of the sequence are:
+----+-------------+----------------------------+
| n  | a(n)        | a(n) in factorial base     |
+----+-------------+----------------------------+
|  1 |           1 |                          1 |
|  2 |           5 |                        2_1 |
|  3 |          21 |                      3_1_1 |
|  4 |          17 |                      2_2_1 |
|  5 |         633 |                  5_1_1_1_1 |
|  6 |          23 |                      3_2_1 |
|  7 |       36153 |              7_1_1_1_1_1_1 |
|  8 |          65 |                    2_2_2_1 |
|  9 |          93 |                    3_3_1_1 |
| 10 |         635 |                  5_1_1_2_1 |
| 11 |   443122713 |     11_1_1_1_1_1_1_1_1_1_1 |
| 12 |          71 |                    2_3_2_1 |
| 13 | 81474226713 | 13_1_1_1_1_1_1_1_1_1_1_1_1 |
| 14 |       36155 |              7_1_1_1_1_2_1 |
| 15 |         645 |                  5_1_3_1_1 |
| 16 |         113 |                    4_2_2_1 |
+----+-------------+----------------------------+
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@ n, g, k, m = {1}}, g[x_] := Flatten[Table[#1, {#2}] & @@@ FactorInteger@ x]; Do[k = Max@ Select[d, # <= i &]; If[! IntegerQ@ k, AppendTo[m, 1], d = Divisors[Last[d]/k]; AppendTo[m, k]]; If[d == {1}, Break[]], {i, 2, n}]; Reverse@ m]; Table[FromDigits[#, MixedRadix[Reverse@ Range[2, Length@ #]]] &@ f@ n, {n, 30}] (* Michael De Vlieger, Oct 12 2015, Version 10.2 *)