A263134 a(n) = Sum_{k=0..n} binomial(3*k+1,k).
1, 5, 26, 146, 861, 5229, 32361, 202905, 1284480, 8191380, 52543545, 338641305, 2191124301, 14224347181, 92603307541, 604342068085, 3952451061076, 25898039418496, 169977746765071, 1117287239602471, 7353933943361866, 48461930821297546
Offset: 0
Links
- Bruno Berselli and G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 form Bruno Berselli)
Crossrefs
Programs
-
Magma
[&+[Binomial(3*k+1,k): k in [0..n]]: n in [0..25]];
-
Mathematica
Table[Sum[Binomial[3 k + 1, k], {k, 0, n}], {n, 0, 25}]
-
Maxima
makelist(sum(binomial(3*k+1,k),k,0,n),n,0,25);
-
PARI
a(n) = sum(k=0, n, binomial(3*k+1,k)) \\ Colin Barker, Oct 16 2015
-
Sage
[sum(binomial(3*k+1,k) for k in (0..n)) for n in (0..25)]
Formula
Recurrence: 2*n*(2*n + 1)*a(n) = (31*n^2 + 2*n - 3)*a(n-1) - 3*(3*n - 1)*(3*n + 1)*a(n-2). - Vaclav Kotesovec, Oct 11 2015
a(n) ~ 27^(n + 3/2)/(23*sqrt(Pi*n)*4^(n + 1)). - Vaclav Kotesovec, Oct 11 2015
Comments