A263180 Decimal expansion of a constant related to A263143 (negated).
1, 4, 6, 1, 6, 8, 1, 3, 4, 9, 2, 0, 8, 0, 4, 0, 0, 7, 3, 6, 2, 0, 0, 6, 7, 0, 6, 5, 1, 4, 9, 9, 3, 6, 7, 9, 0, 7, 0, 8, 8, 2, 2, 1, 7, 0, 4, 8, 0, 5, 3, 7, 7, 4, 9, 4, 3, 7, 0, 4, 1, 7, 4, 8, 9, 0, 4, 3, 2, 9, 3, 6, 0, 5, 2, 4, 3, 2, 1, 4, 8, 8, 5, 0, 3, 9, 2, 9, 7, 2, 0, 3, 7, 8, 8, 0, 2, 6, 0, 6, 9, 7, 2, 5, 1, 8
Offset: 0
Examples
-0.146168134920804007362006706514993679070882217048053774943704174890...
Programs
-
Mathematica
NIntegrate[E^(-2*x)/(1-E^(-5*x))^2/x - 1/(25*x^3) - 3/(25*x^2) - 29*E^(-x)/(300*x), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]
Formula
Integral_{x=0..infinity} exp(-2*x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 3/(25*x^2) - 29/(300*x*exp(x)) dx.
A263178 + A263179 + A263180 + A263181 = (log(Gamma(1/5)^3 / ((1+sqrt(5)) * Pi * Gamma(3/5) * 5^(29/12))) - 4*Zeta'(-1))/5 = -0.2745843324986204888923185745... . - Vaclav Kotesovec, Oct 12 2015
Comments