A263146 Expansion of Product_{k>=1} (1+x^(5*k-2))^k.
1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 4, 0, 4, 1, 0, 10, 0, 5, 6, 0, 16, 0, 6, 14, 0, 28, 3, 7, 32, 0, 40, 10, 8, 63, 0, 60, 33, 9, 112, 3, 80, 74, 10, 187, 14, 110, 161, 11, 300, 46, 140, 308, 13, 455, 120, 182, 568, 25, 672, 283, 224, 968, 55, 963
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1+x^(5k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^(3*j)/(1 - x^(5*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{j>=1} (-1)^(j+1)/j*x^(3*j)/(1 - x^(5*j))^2).
a(n) ~ 2^(33/100) * 3^(2/3) * 5^(2/3) * Zeta(3)^(1/6) * exp(-Pi^4/(8100*Zeta(3)) + Pi^2 * 3^(2/3) * 2^(1/3) * 5^(2/3) * n^(1/3) / (450*Zeta(3)^(1/3)) + Zeta(3)^(1/3) * 3^(4/3) * 2^(2/3) * 5^(1/3) * n^(2/3) / 20) / (30 * sqrt(Pi) * n^(2/3)).