cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263161 Positive values of n such that A000071(n+2) is divisible by A000217(n).

Original entry on oeis.org

1, 240, 600, 768, 1008, 1200, 1320, 1800, 2160, 2688, 2736, 3000, 3360, 3888, 4800, 5280, 5520, 6120, 6479, 6480, 6720, 6840, 7320, 7680, 8208, 8640, 9000, 9600, 9720, 10368, 11160, 11663, 12240, 12288, 13200, 13248, 13440, 13680, 14400, 15120, 15360, 15456, 16560, 18048
Offset: 1

Views

Author

Altug Alkan, Oct 11 2015

Keywords

Comments

Interestingly, the minimum value of a(n) - a(n-1) is 1. Is there a maximum value of a(n) - a(n-1)?
From Robert Israel, Oct 19 2015: (Start)
n is in the sequence if either n is odd and A001175(n) and A001175((n+1)/2) both divide n+1, or n is even and A001175(n/2) and A001175(n+1) both divide n.
Most of the terms of the sequence appear to fall in these categories. The first two that do not are 15456 and 41640.
In particular, if n = 2^j * 3^k * 5^m with j >= 4, k >= 1 and m >= 1, and n+1 is prime, then n is in the sequence. There are believed to be infinitely many numbers of this form. The first few are 240, 1200, 2160, 4800, 6480, 7680, 8640, 9600, 14400, 15360. (End)

Examples

			For n = 1, A000071(1+2) = 1 is divisible by A000217(1) = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000] | IsDivisibleBy(Fibonacci(n+2)-1, n*(n+1) div 2)]; // Bruno Berselli, Oct 19 2015
  • Maple
    fmod:= proc(a, b) local A, t;
      uses LinearAlgebra[Modular];
      if b < 4295022903 then t:= integer[8] else t:= integer fi;
      A:= Mod(b, <<1, 1>|<1, 0>>, t);
      MatrixPower(b, A, a)[1, 2];
    end proc:
    filter:= n -> (fmod(n+2, n*(n+1)/2) = 1):
    filter(1):= true:
    select(filter, [$1..10^5]); # Robert Israel, Oct 19 2015
  • Mathematica
    fQ[n_] := Mod[Fibonacci[n + 2] - 1, n (n + 1)/2] == 0; Select[Range@20000, fQ] (* Bruno Berselli, Oct 19 2015 - after Robert G. Wilson v in A263225 *)
  • PARI
    for(n=1, 20000, if((fibonacci(n+2)-1) % (n*(n+1)/2) == 0, print1(n", ")));
    
  • PARI
    is(n)=((Mod([1,1;1,0],n*(n+1)/2))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Oct 19 2015