A263161 Positive values of n such that A000071(n+2) is divisible by A000217(n).
1, 240, 600, 768, 1008, 1200, 1320, 1800, 2160, 2688, 2736, 3000, 3360, 3888, 4800, 5280, 5520, 6120, 6479, 6480, 6720, 6840, 7320, 7680, 8208, 8640, 9000, 9600, 9720, 10368, 11160, 11663, 12240, 12288, 13200, 13248, 13440, 13680, 14400, 15120, 15360, 15456, 16560, 18048
Offset: 1
Keywords
Examples
For n = 1, A000071(1+2) = 1 is divisible by A000217(1) = 1.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..20000] | IsDivisibleBy(Fibonacci(n+2)-1, n*(n+1) div 2)]; // Bruno Berselli, Oct 19 2015
-
Maple
fmod:= proc(a, b) local A, t; uses LinearAlgebra[Modular]; if b < 4295022903 then t:= integer[8] else t:= integer fi; A:= Mod(b, <<1, 1>|<1, 0>>, t); MatrixPower(b, A, a)[1, 2]; end proc: filter:= n -> (fmod(n+2, n*(n+1)/2) = 1): filter(1):= true: select(filter, [$1..10^5]); # Robert Israel, Oct 19 2015
-
Mathematica
fQ[n_] := Mod[Fibonacci[n + 2] - 1, n (n + 1)/2] == 0; Select[Range@20000, fQ] (* Bruno Berselli, Oct 19 2015 - after Robert G. Wilson v in A263225 *)
-
PARI
for(n=1, 20000, if((fibonacci(n+2)-1) % (n*(n+1)/2) == 0, print1(n", ")));
-
PARI
is(n)=((Mod([1,1;1,0],n*(n+1)/2))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Oct 19 2015
Comments