cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263162 Number of lattice paths starting at {n}^4 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 15, 2101, 717795, 328504401, 172924236255, 98788351385893, 59547100211425779, 37279994808479614465, 24006888102075722880975, 15800133137207909144690421, 10580854797781352259168325347, 7186571606168294602440625922385, 4938826696886704892539811529645855
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=4 of A263159.
Cf. A263064.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..4], n=17..31):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$4]):
    seq(a(n), n=0..16);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 4]], {n, 2^4 + 1, 2^5 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {4}]];
    a /@ Range[0, 16] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / (Pi^(3/2) * n^(3/2)), where d = 195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)) = 780.279406806795145659... and c = sqrt(112232 - 176706*sqrt(2) + sqrt(-24823369828 + 32297875299*sqrt(2)))/2744 = 0.02991158822483794318293134... . - Vaclav Kotesovec, Nov 28 2016