A263163 Number of lattice paths starting at {n}^5 and ending when any component equals 0, using steps that decrement one or more components by one.
1, 31, 32461, 142090291, 944362553521, 7622403922836151, 68836844233002312181, 668865316589763487491811, 6842570537592835194176298241, 72725938463068824904583496062671, 796079042828286992045143086504942301, 8920612967950147759634381671622287341331
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..75
Crossrefs
Column k=5 of A263159.
Programs
-
Maple
g():= seq(convert(n, base, 2)[1..5], n=33..63): b:= proc(l) option remember; `if`(l[1]=0, 1, add(b(sort(l-h)), h=g())) end: a:= n-> b([n$5]): seq(a(n), n=0..12);
-
Mathematica
g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 5]], {n, 2^5 + 1, 2^6 - 1}]; b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]]; a[n_] := b[Table[n, {5}]]; a /@ Range[0, 12] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)