A263166 Number of lattice paths starting at {n}^8 and ending when any component equals 0, using steps that decrement one or more components by one.
1, 255, 277284181, 7671206130046515, 463841686707958609540881, 39946850792952097272345707272335, 4211153593189257990239568354710957472133, 506051495006579137756029271328016744207715324419, 66656513992169790340795231563272399566454175106315563265
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20
Crossrefs
Column k=8 of A263159.
Programs
-
Maple
g():= seq(convert(n, base, 2)[1..8], n=257..511): b:= proc(l) option remember; `if`(l[1]=0, 1, add(b(sort(l-h)), h=g())) end: a:= n-> b([n$8]): seq(a(n), n=0..8);
-
Mathematica
g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 8]], {n, 2^8 + 1, 2^9 - 1}]; b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]]; a[n_] := b[Table[n, {8}]]; a /@ Range[0, 8] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)