A263167 Number of lattice paths starting at {n}^9 and ending when any component equals 0, using steps that decrement one or more components by one.
1, 511, 7229006221, 4888774762356549331, 8144781718207791515101819441, 20371729407721971932197861769050382551, 64254115995388375135778208276014009097192012661, 235485313707274694851291521951126742198585792399471283971
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..15
Crossrefs
Column k=9 of A263159.
Programs
-
Maple
g():= seq(convert(n, base, 2)[1..9], n=513..1023): b:= proc(l) option remember; `if`(l[1]=0, 1, add(b(sort(l-h)), h=g())) end: a:= n-> b([n$9]): seq(a(n), n=0..7);
-
Mathematica
g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 9]], {n, 2^9+1, 2^10-1}]; b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]]; a[n_] := b[Table[n, {9}]]; a /@ Range[0, 7] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)