cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102405 Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 1 that start at an odd level.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 3, 1, 26, 12, 3, 1, 72, 41, 15, 3, 1, 206, 143, 58, 18, 3, 1, 606, 492, 231, 76, 21, 3, 1, 1820, 1693, 891, 335, 95, 24, 3, 1, 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1, 17206, 20040, 12870, 5848, 2061, 591, 136, 30, 3, 1, 53872, 69033, 48318, 23858, 9143, 2850, 743, 158, 33, 3, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 06 2005

Keywords

Comments

T(n,k) is number of Łukasiewicz paths of length n having k level steps at an odd level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,1)=1 because we have only UHD with exactly one level step at an odd level; here U=(1,1), H=(1,0) and D=(1,-1). Row n has n-1 terms (n>=2). Row sums are the Catalan numbers (A000108). Column 0 yields A102407.
T(n,k) is the number of Dyck paths of semilength n with k DUDU's. - I. Tasoulas (jtas(AT)unipi.gr), Feb 19 2006

Examples

			T(4,1) = 3 because we have UDUUD(U)DD, UUD(U)DDUD and UUUDD(U)DD, where U=(1,1), D=(1,-1) and the ascents of length 1 that start at an odd level are shown between parentheses.
Triangle starts:
00 :    1;
01 :    1;
02 :    2;
03 :    4,    1;
04 :   10,    3,    1;
05 :   26,   12,    3,    1;
06 :   72,   41,   15,    3,   1;
07 :  206,  143,   58,   18,   3,   1;
08 :  606,  492,  231,   76,  21,   3,  1;
09 : 1820, 1693,  891,  335,  95,  24,  3, 1;
10 : 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1;
		

Crossrefs

Cf. A000108, A094507 (the same for UDUD), A102404, A102407, A263173.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y-1, [2, 2, 4, 2][t])
          +b(x-1, y+1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, {2, 2, 4, 2}[[t]]] + b[x-1, y+1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t, z) satisfies zG^2-(1+z-z^2-tz+tz^2)G+1+z-tz=0.
Showing 1-1 of 1 results.