A263182 Smallest k such that k//A002275(n)//k is prime, where // denotes concatenation and A002275(n) is the n-th repunit (R_n).
1, 3, 13, 17, 1073, 19, 17, 29, 10000117, 73, 17, 3, 1007, 3, 43, 11, 1000000000000029, 1, 31, 11, 1191, 1, 1143, 31, 10000079, 21, 91, 59, 1019, 3, 67, 117, 10000000000000000000000000000077, 109, 89, 49, 1097, 41, 1053, 43, 10000047, 87, 23, 53, 1149, 83, 57
Offset: 0
Examples
R_0 = 0 and the smallest k such that k//0//k is prime is 1, so a(0) = 1.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1023
Programs
-
Mathematica
Table[k = 1; While[! PrimeQ[f[n, k]], k++]; k, {n, 0, 7}] (* Michael De Vlieger, Oct 13 2015 *)
-
PARI
a(n) = my(rep=(10^n-1)/9, k=1); while(!ispseudoprime(eval(Str(k, rep, k))), k++); k
Formula
a(A004023(n)-2) = 1. - Chai Wah Wu, Nov 04 2019
Extensions
a(16)-a(46) from Chai Wah Wu, Nov 04 2019
Comments