A263191 Triangle read by rows: T(n>=0, 1<=k<=A000108(n)) is the number of Dyck paths of length 2n having k smaller elements in Tamari order.
1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 3, 2, 2, 2, 0, 2, 0, 1, 0, 0, 0, 0, 1, 1, 4, 3, 5, 4, 2, 4, 0, 5, 2, 0, 2, 0, 3, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 4, 9, 6, 7, 6, 3, 10, 6, 4, 4, 0, 9, 5, 2, 0, 4, 4, 4, 0, 0, 4, 3, 1, 0, 2, 4, 0, 4, 0, 0, 0, 3, 0, 0, 2
Offset: 0
Examples
Triangle begins: 1; 1; 1,1; 1,2,1,0,1; 1,3,2,2,2,0,2,0,1,0,0,0,0,1; 1,4,3,5,4,2,4,0,5,2,0,2,0,3,0,1,0,0,2,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1; ...
Links
- Alois P. Heinz, Rows n = 0..10, flattened
- FindStat - Combinatorial Statistic Finder, The number of elements smaller than the given Dyck path in the Tamari Order.
- Wikipedia, Tamari lattice.
Formula
Extensions
Two terms (for rows 0 and 1) prepended by Alois P. Heinz, Nov 15 2015
Comments