A263199 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^(2*k+1).
1, 0, 0, 3, 0, 5, 6, 7, 15, 19, 36, 41, 77, 100, 156, 230, 317, 482, 665, 981, 1354, 1967, 2710, 3852, 5363, 7453, 10373, 14287, 19780, 27022, 37220, 50583, 69140, 93693, 127098, 171640, 231469, 311323, 417627, 559577, 747122, 996947, 1325872, 1761900
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d* `if`(d::even, 0, d), d=divisors(j))*b(n-j), j=1..n)/n) end: seq(b(n)-b(n-1), n=0..60); # after Alois P. Heinz
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1 - x^(2*k+1))^(2*k+1),{k,1,nmax}],{x,0,nmax}],x]