cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263203 Consider the numbers m such that m = prime(k) + prime(k+2i+1) = prime(k+i) + prime(k+i+1) for some i and k. The sequence lists the number of pairs (i,k) giving the same value m = A105093(n).

Original entry on oeis.org

1, 2, 2, 1, 4, 3, 4, 2, 2, 2, 1, 1, 2, 6, 5, 4, 1, 2, 1, 4, 4, 5, 7, 3, 6, 7, 1, 2, 1, 7, 10, 7, 7, 2, 6, 1, 5, 10, 12, 5, 10, 3, 5, 11, 9, 9, 8, 2, 6, 2, 2, 3, 10, 1, 5, 11, 10, 7, 7, 5, 3, 5, 5, 1, 4, 2, 4, 2, 5, 7, 4, 5, 8, 7, 6, 5, 3, 7, 13, 1, 1, 9, 5, 1
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2015

Keywords

Comments

The form m = prime(k) + prime(k+2i+1) = prime(k+i) + prime(k+i+1) is a generalization of A105093 (form prime(k) + prime(k+3) = prime(k+1) + prime(k+2)), and the set of the numbers m is exactly A105093(n).

Examples

			a(6) = 3 because A105093(6)= 84 and:
for (i,k)=(1,12), prime(12)+ prime(15)= prime(13)+ prime(14)=37+47=41+43=84;
for (i,k)=(2,11), prime(11)+ prime(16)= prime(12)+ prime(15)=31+53=37+47=84;
for (i,k)=(4,9), prime(9)+ prime(18)= prime(13)+ prime(14)=23+61=41+43=84.
So, we find 3 pairs (i,k) giving m = 84.
		

Crossrefs

Cf. A105093.

Programs

  • Maple
    with(numtheory):nn:=5000:
    A105093:={18,24,30,36,60,84,120,162,204,210,216,240,288,330,372,390,456,520,540,624,726,762,798,840,852,882,924,978,990,1104,1140,1164,1200,1392,1410,1428,1530,1632,1650,1716,1740,1764,1794,1848,1974,2052,2100,2112,2184,2226,2334,2460,2580,2604,2688,2856,2970,2976,3054,3102,3138,3150,3180,3240,3500,3536,3612,3744,3750,3882,3966,3996,4056,4092,4170,4242,4680,4698,4728,4782,4810,5100,5376,5460}:n0:=nops(A105093):
      for n from 1 to n0 do:
       ii:=0:it:=0:q:=A105093[n]:
       for i from 1 to 100 do:
          for k from 1 to nn do:
            s1:=ithprime(k)+ithprime(k+2*i+1):
            s2:= ithprime(k+i)+ithprime(k+i+1):
            if s1=s2 and s1=q
            then
            it:=it+1:
            else
            fi:
           od:
          od:
           printf(`%d, `,it):
         od: