A263231 a(n) = n*(25*n - 39)/2.
0, -7, 11, 54, 122, 215, 333, 476, 644, 837, 1055, 1298, 1566, 1859, 2177, 2520, 2888, 3281, 3699, 4142, 4610, 5103, 5621, 6164, 6732, 7325, 7943, 8586, 9254, 9947, 10665, 11408, 12176, 12969, 13787, 14630, 15498, 16391, 17309, 18252, 19220
Offset: 0
References
- M. R. Farahani, Hosoya polynomial and Wiener index of Jahangir graphs J_{2,m}, Pacific J. Appl. Math, 7 (3), 2015.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a263231 n = n * (25 * n - 39) `div` 2 a263231_list = 0 : -7 : 11 : zipWith (+) a263231_list (map (* 3) $ tail $ zipWith (-) (tail a263231_list) a263231_list) -- Reinhard Zumkeller, Nov 04 2015
-
Maple
seq((25*n^2 - 39*n)/2, n=0..40);
-
Mathematica
Table[n (25 n - 39)/2, {n, 0, 40}]
-
PARI
vector(50, n, n--; n*(25*n-39)/2)
-
PARI
concat(0, Vec(x*(32*x-7)/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 18 2015
Formula
G.f.: x*(32*x-7)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Comments