cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263239 Euler pseudoprimes to base 9: composite integers such that abs(9^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

4, 28, 91, 121, 286, 532, 671, 703, 949, 1036, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4636, 4961, 5551, 6364, 6601, 7381, 8401, 8911, 10585, 11011, 11476, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 19684, 23521, 24046, 24661, 24727
Offset: 1

Views

Author

Daniel Lignon, Oct 12 2015

Keywords

Comments

Even numbers are permitted since 9 is an integer square. - Charles R Greathouse IV, Oct 12 2015

Crossrefs

Cf. A020138 (pseudoprimes to base 9).
Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudo9Q[n_]:=(Mod[9^((n-1)/2)+1,n]==0 ||Mod[9^((n-1)/2)-1,n]==0) && Not[PrimeQ[n]];
    Select[Range[2,200000],eulerPseudo9Q]
  • PARI
    is(n) = abs(centerlift(Mod(3, n)^(n-1)))==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 12 2015