A263250 Even bisection of A263087; number of solutions to x - d(x) = 4(n^2), where d(x) is the number of divisors of x (A000005).
2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Programs
-
PARI
A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200. A263087(n) = A060990(n^2); A263250(n) = A263087(2*n); p = 0; for(n=0, 10000, k = A263250(n); p += k; write("b263250.txt", n, " ", k); write("b263252.txt", n, " ", p)); \\ Compute A263250 and A263252 at the same time.
-
Scheme
(define (A263250 n) (A263087 (+ n n)))
Formula
a(n) = A263087(2*n).