cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263250 Even bisection of A263087; number of solutions to x - d(x) = 4(n^2), where d(x) is the number of divisors of x (A000005).

Original entry on oeis.org

2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Crossrefs

Cf. also A263252 (partial sums).

Programs

  • PARI
    A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
    A263087(n) = A060990(n^2);
    A263250(n) = A263087(2*n);
    p = 0; for(n=0, 10000, k = A263250(n); p += k; write("b263250.txt", n, " ", k); write("b263252.txt", n, " ", p)); \\ Compute A263250 and A263252 at the same time.
    
  • Scheme
    (define (A263250 n) (A263087 (+ n n)))

Formula

a(n) = A263087(2*n).