cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263347 Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

Original entry on oeis.org

37158601, 1017439067, 1242117623, 1554424697, 1905955429, 2727763433, 4512543497, 4798554619, 4954643117, 4988327659, 5367644183, 5660978867, 6107173883, 7173264623, 7425967459, 8365215091, 8776906457, 9013226179, 9095014883, 9787717801, 10466795551
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 15 2015

Keywords

Comments

Cohen and Selfridge showed that this sequence contains infinitely many numbers that are both SierpiƄski and Riesel.
What is the smallest term of this sequence that belongs to A076335? Is it the smallest Brier number?
This sequence contains only numbers of the form 30*k + 1, 30*k + 17, 30*k + 19, and 30*k + 23.

Crossrefs

Subsequence of A076336.
A263560 gives the primes.

Formula

a(n) = a(n-96) + 39832304070 for n > 96.