A263347 Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
37158601, 1017439067, 1242117623, 1554424697, 1905955429, 2727763433, 4512543497, 4798554619, 4954643117, 4988327659, 5367644183, 5660978867, 6107173883, 7173264623, 7425967459, 8365215091, 8776906457, 9013226179, 9095014883, 9787717801, 10466795551
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..96
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- Carlos Rivera, Problem 29 and Problem 58
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Formula
a(n) = a(n-96) + 39832304070 for n > 96.
Comments