A263358 Expansion of Product_{k>=1} 1/(1-x^(k+2))^k.
1, 0, 0, 1, 2, 3, 5, 7, 12, 18, 29, 43, 69, 101, 155, 231, 347, 509, 759, 1106, 1626, 2359, 3428, 4938, 7127, 10194, 14587, 20756, 29498, 41716, 58932, 82888, 116413, 162924, 227602, 316988, 440696, 610953, 845469, 1167118, 1608178, 2210888, 3034124, 4155111
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Vaclav Kotesovec, Graph - The asymptotic ratio (30000 terms)
- Eric Weisstein's World of Mathematics, Barnes G-Function
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* max(0, d-2), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Oct 16 2015
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(1-x^(k+2))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 50; CoefficientList[Series[E^Sum[x^(3*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1-x^k)^2)).
Comments