A263363 Expansion of Product_{k>=1} 1/(1-x^(k+7))^k.
1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 17, 22, 32, 42, 59, 76, 103, 130, 171, 216, 280, 354, 460, 584, 757, 968, 1249, 1596, 2056, 2618, 3354, 4266, 5441, 6900, 8778, 11108, 14094, 17814, 22546, 28450, 35946, 45280, 57088, 71806, 90347
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* max(0, d-7), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Oct 16 2015
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 60; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^k)^2)).