A263364 Expansion of Product_{k>=1} 1/(1-x^(k+8))^k.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 23, 33, 43, 60, 77, 103, 130, 168, 209, 267, 331, 420, 526, 667, 839, 1069, 1347, 1711, 2160, 2733, 3437, 4336, 5435, 6828, 8543, 10699, 13357, 16703, 20820, 25986, 32362, 40327, 50152, 62407
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Eric Weisstein's World of Mathematics, Barnes G-Function.
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* max(0, d-8), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Oct 16 2015
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+8))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^k)^2)).
Comments