A263396 Expansion of Product_{k>=1} 1/(1 - x^(2*k+7))^k.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 6, 8, 10, 9, 19, 11, 28, 13, 44, 18, 60, 27, 85, 42, 111, 67, 148, 109, 188, 169, 245, 260, 313, 390, 408, 568, 535, 811, 717, 1139, 974, 1568, 1343, 2134, 1872, 2873, 2621, 3832, 3687, 5088
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local r; `if`(n=0, 1, add(add(`if`(irem(d-6, 2, 'r')=1, d*r, 0) , d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..65); # Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^(2*k))^2)).