A263402 Define Z(1) = {1}, and Z(n+1) = Z(n) (+) { x+y, with x and y in Z(n) } for any n>0 (where (+) stands for the symmetric difference of two sets). Then a(n) gives the number of elements in Z(n).
1, 2, 3, 7, 10, 22, 42, 87, 170, 342, 686, 1365, 2727, 5468, 10919, 21857, 43680, 87389, 174756, 349539, 699039, 1398115, 2796191, 5592422, 11184795, 22369639, 44739229, 89478503, 178956950, 357913967, 715827858, 1431655793, 2863311503, 5726623097, 11453246088
Offset: 1
Keywords
Examples
Z(1) = {1}; Z(2) = {1} (+) {2} = {1,2}; Z(3) = {1,2} (+) {2,3,4} = {1,3,4}; Z(4) = {1,3,4} (+) {2,4,5,6,7,8} = {1,2,3,5,6,7,8}; Hence: a(1) = 1, a(2) = 2, a(3) = 3 and a(4) = 7.
Links
Crossrefs
Cf. A067398.
Programs
-
PARI
lista(nn) = {zprec = Set([1]); print1(#zprec, ", "); for (n=2, nn, zs = setbinop((x,y)->x+y, zprec); zn = setminus(setunion(zprec, zs), setintersect(zprec, zs)); print1(#zn, ", "); zprec = zn;);} \\ Michel Marcus, Oct 20 2015
-
Perl
See Links section.
Comments