cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263406 Expansion of Product_{k>=1} 1/(1-x^(3*k+2))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 3, 0, 2, 4, 1, 6, 5, 2, 10, 7, 6, 19, 9, 14, 29, 14, 28, 46, 23, 53, 66, 43, 95, 99, 76, 158, 143, 141, 256, 217, 247, 403, 326, 432, 617, 509, 720, 935, 801, 1187, 1399, 1281, 1892, 2087, 2047, 2983, 3107, 3272, 4589, 4647
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d-2, 3)=0, (d-2)/3, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(3*k+2))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(5*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * Zeta(3)^(13/108) * exp(-Pi^4/(972*Zeta(3)) - Pi^2 * n^(1/3) / (2^(1/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (2^(41/108) * 3^(20/27) * sqrt(Pi) * n^(67/108)), where c = 3^(1/3) * Gamma(1/3) * exp(A263030) / sqrt(2*Pi) = 1.2763162741536982965216627321306598385267089489...