A263414 Expansion of Product_{k>=1} 1/(1-x^(3*k+4))^k.
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 4, 2, 0, 5, 6, 1, 6, 10, 2, 7, 19, 6, 9, 28, 14, 11, 44, 28, 16, 61, 52, 25, 87, 93, 45, 116, 153, 77, 160, 244, 141, 215, 376, 244, 301, 560, 422, 422, 817, 695, 617, 1173, 1132, 917, 1661, 1776, 1399, 2331
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, Graph - The asymptotic ratio (80000 terms)
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local r; `if`(n=0, 1, add(add(`if`(irem(d-3, 3, 'r')=1, d*r, 0) , d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..70); # Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+4))^k,{k,1,nmax}],{x,0,nmax}],x] nmax = 80; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * exp(-Pi^4/(243*Zeta(3)) - 4*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(65/108) * 3^(8/27) * Zeta(3)^(11/108) * n^(43/108)), where c = exp(A263031) * 2 * 3^(1/3) * Pi / Gamma(1/3)^2 = 1.24446091929106216111829684663735422946506...
Comments