A263415 Expansion of Product_{k>=1} 1/(1-x^(3*k+5))^k.
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 4, 0, 2, 5, 0, 6, 6, 1, 10, 7, 2, 19, 8, 6, 28, 10, 14, 44, 12, 28, 60, 17, 52, 86, 26, 93, 112, 46, 152, 152, 78, 243, 196, 142, 372, 264, 244, 552, 350, 422, 798, 486, 692, 1136, 680, 1125, 1582, 997, 1758
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, Graph - The asymptotic ratio (80000 terms)
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local r; `if`(n=0, 1, add(add(`if`(irem(d-3, 3, 'r')=2, d*r, 0) , d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..70); # Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+5))^k,{k,1,nmax}],{x,0,nmax}],x] nmax = 80; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * 3^(1/27) * exp(-25*Pi^4 / (3888*Zeta(3)) - 5*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(83/108) * Zeta(3)^(29/108) * n^(25/108)), where c = exp(A263030) * Pi / (3^(1/3) * Gamma(2/3)^2) = 0.98365214791227284535715328899346961376609...
Comments