A273816 Decimal expansion the Bessel moment c(3,0) = Integral_{0..inf} K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.
6, 9, 4, 8, 8, 2, 2, 7, 8, 1, 0, 7, 9, 6, 2, 9, 7, 8, 9, 4, 3, 6, 4, 3, 6, 4, 4, 5, 4, 7, 0, 8, 2, 9, 7, 5, 7, 6, 7, 4, 8, 5, 1, 1, 3, 2, 6, 0, 9, 8, 9, 1, 7, 3, 5, 1, 6, 2, 3, 8, 0, 6, 8, 8, 1, 9, 1, 4, 2, 2, 3, 3, 8, 1, 9, 9, 8, 0, 4, 1, 8, 6, 8, 3, 9, 9, 5, 2, 3, 5, 1, 8, 0, 6, 0, 9, 5, 5, 3, 7, 1, 9, 3
Offset: 1
Examples
6.94882278107962978943643644547082975767485113260989173516238...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
Programs
-
Mathematica
c[3, 0] = 3*Gamma[1/3]^6/(32*Pi*2^(2/3)); RealDigits[c[3, 0], 10, 103][[1]]
Formula
c(3, 0) = 3*Gamma(1/3)^6/(32*Pi*2^(2/3)).
Equals (1/2)*Pi*K[(1/4)*(2 - Sqrt[3])]*K[(1/4)*(2 + Sqrt[3])], where K(x) is the complete elliptic integral of the first kind.
Also equals sqrt(3) Pi^3/8 3F2(1/2, 1/2, 1/2; 1, 1; 1/4), where 3F2 is the generalized hypergeometric function A263490.