A263502 Expansion of phi(q) * f(-q^2)^3 / f(-q^6) in powers of q where phi(), f() are Ramanujan theta functions.
1, 2, -3, -6, 2, 0, 0, 12, -3, -4, 12, -6, -6, 0, -6, 0, 2, -6, -12, 12, 0, 0, 24, -12, 0, 14, -6, -6, 12, 0, -24, 12, -3, 0, 12, -12, -4, 0, -12, -24, 12, -6, 0, 36, -6, 0, 24, -12, -6, 14, -15, 0, 0, 0, 0, 24, -6, -24, 36, -6, 0, 0, -18, -24, 2, -12, -24, 36
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x - 3*x^2 - 6*x^3 + 2*x^4 + 12*x^7 - 3*x^8 - 4*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] QPochhammer[ q^2]^3 / QPochhammer[ q^6], {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)), n))};
Comments