cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263511 Total number of ON (black) cells after n iterations of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 6, 12, 19, 29, 40, 54, 69, 87, 106, 128, 151, 177, 204, 234, 265, 299, 334, 372, 411, 453, 496, 542, 589, 639, 690, 744, 799, 857, 916, 978, 1041, 1107, 1174, 1244, 1315, 1389, 1464, 1542, 1621, 1703, 1786, 1872, 1959, 2049, 2140, 2234, 2329, 2427
Offset: 0

Views

Author

Robert Price, Jan 17 2016

Keywords

Comments

Conjecture: it appears that these number also describe the number of numerically different eigenvalues of the triangular grid graphs with an odd number of edges on each side of the outer triangle, starting with |eigenvalues(T_3)|=6, |eigenvalues(T_5)|=12, etc. (checked up to |eigenvalues(T_13)|=54). - Michael Terhoeven, Jul 12 2025

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A263243.

Programs

  • Magma
    I:=[1,3,6,12]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jan 18 2016
  • Mathematica
    rule=155; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 3, 6, 12}, 50] (* Vincenzo Librandi, Jan 18 2016 *)

Formula

G.f.: (1+x+2*x^3)/((1-x)^3*(1+x)). - Vincenzo Librandi, Jan 18 2016
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3. - Vincenzo Librandi, Jan 18 2016