A263511 Total number of ON (black) cells after n iterations of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.
1, 3, 6, 12, 19, 29, 40, 54, 69, 87, 106, 128, 151, 177, 204, 234, 265, 299, 334, 372, 411, 453, 496, 542, 589, 639, 690, 744, 799, 857, 916, 978, 1041, 1107, 1174, 1244, 1315, 1389, 1464, 1542, 1621, 1703, 1786, 1872, 1959, 2049, 2140, 2234, 2329, 2427
Offset: 0
References
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
- Stephen Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A263243.
Programs
-
Magma
I:=[1,3,6,12]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jan 18 2016
-
Mathematica
rule=155; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *) LinearRecurrence[{2, 0, -2, 1}, {1, 3, 6, 12}, 50] (* Vincenzo Librandi, Jan 18 2016 *)
Formula
G.f.: (1+x+2*x^3)/((1-x)^3*(1+x)). - Vincenzo Librandi, Jan 18 2016
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3. - Vincenzo Librandi, Jan 18 2016
Comments