A263452 Expansion of f(-q^3)^3 * psi(q^12) / f(-q) in powers of q where ps(), f() are Ramanujan theta functions.
1, 1, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 3, 1, 4, 0, 5, 3, 2, 0, 3, 3, 4, 0, 4, 2, 4, 0, 3, 2, 4, 0, 4, 2, 4, 0, 5, 5, 4, 0, 3, 3, 8, 0, 7, 3, 6, 0, 4, 4, 4, 0, 6, 4, 4, 0, 9, 3, 6, 0, 4, 4, 4, 0, 4, 3, 8, 0, 5, 5, 6, 0, 9, 3, 4, 0, 7, 6, 6, 0, 7, 6, 10, 0, 6, 3
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 2*x^6 + x^8 + 2*x^9 + 2*x^10 + ... G.f. = q^11 + q^17 + 2*q^23 + 2*q^35 + q^41 + 2*q^47 + q^59 + 2*q^65 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^3 EllipticTheta[ 2, 0, q^6] / ( 2 q^(3/2) QPochhammer[ q]), {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^24 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};
Formula
Expansion of q^(-11/6) * eta(q^3)^3 * eta(q^24)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -1, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -3, ...].
-2 * a(n) = A263527(2*n + 3). - Michael Somos, Nov 05 2015
Comments