cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262930 Expansion of (psi(-q) / f(q^3))^2 in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 1, -4, 6, -2, 12, -16, 5, -28, 36, -12, 60, -76, 24, -120, 150, -46, 228, -280, 86, -416, 504, -152, 732, -878, 262, -1252, 1488, -442, 2088, -2464, 725, -3408, 3996, -1168, 5460, -6364, 1852, -8600, 9972, -2886, 13344, -15400, 4436, -20424, 23472
Offset: 0

Views

Author

Michael Somos, Oct 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 4*x^3 + 6*x^4 - 2*x^5 + 12*x^6 - 16*x^7 + 5*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) q^(-1/4) (EllipticTheta[ 2, Pi/4, q^(1/2)] / QPochhammer[ -q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / ( eta(x^2 + A) * eta(x^6 + A)^3 ))^2, n))};

Formula

Expansion of ( eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / ( eta(q^2) * eta(q^6)^3 ))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 0, -4, -2, -2, 4, -2, -2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A261369.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = A261369(n).
Convolution square of A139136.
a(2*n) = A263538(n). a(2*n + 1) = -2 * A263528(n).

A259033 Expansion of psi(x^3)^2 * f(-x^2)^4 / f(-x)^6 in powers of where psi(), f() are Ramanujan theta function.

Original entry on oeis.org

1, 6, 23, 76, 221, 584, 1443, 3368, 7497, 16046, 33190, 66628, 130288, 248858, 465387, 853836, 1539425, 2731462, 4775703, 8236856, 14027754, 23609794, 39301171, 64747876, 105638153, 170778512, 273704800, 435079524, 686237877, 1074405242, 1670333294, 2579418528
Offset: 0

Views

Author

Michael Somos, Nov 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*x + 23*x^2 + 76*x^3 + 221*x^4 + 584*x^5 + 1443*x^6 + 3368*x^7 + ...
G.f. = q^5 + 6*q^11 + 23*q^17 + 76*q^23 + 221*q^29 + 584*q^35 + 1443*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) x^(-3/4) EllipticTheta[ 2, 0, x^(3/2)]^2 QPochhammer[ x^2]^4 / QPochhammer[ x]^6, {x, 0, n}];
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)^2 * (1 + x^(3*k))^2 * (1 - x^(3*k)) / (1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A)^3 * eta(x^3 + A)))^2, n))};

Formula

Expansion of q^(-5/6) * (eta(q^2)^2 * eta(q^6)^2 / (eta(q)^3 * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ 6, 2, 8, 2, 6, 0, ...].
a(n) = A263528(3*n + 2). -2 * a(n) = A261369(2*n + 1) = A213265(6*n + 5) = A262930(6*n + 5).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(19/4) * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Showing 1-2 of 2 results.