A263536 Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.
5, 7, 12, 17, 19, 24, 29, 31, 36, 41, 43, 48, 53, 55, 60, 65, 67, 72, 77, 79, 84, 89, 91, 96, 101, 103, 108, 113, 115, 120, 125, 127, 132, 137, 139, 144, 149, 151, 156, 161, 163, 168, 173, 175, 180, 185, 187, 192, 197, 199, 204, 209, 211, 216, 221, 223, 228
Offset: 1
Examples
Triangle T(n,k): Row sum 5; 5 3, 4; 7 4, 5, 3; 12 5, 3, 4, 5; 17 3, 4, 5, 3, 4; 19 4, 5, 3, 4, 5, 3; 24
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Craig Knecht, Equilateral triangle tiled with 3,4,5 Pythagorean triples.
- Craig Knecht, Interlocked up/down Pythagorean pairs.
- Craig Knecht, Linear and triangular triples.
- Craig Knecht, Incarcerated numbers.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
PARI
Vec(x*(5*x^2+2*x+5)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 26 2015
Formula
From Colin Barker, Oct 26 2015: (Start)
a(n) = a(n-1)+a(n-3)-a(n-4) for n>4.
G.f.: x*(5*x^2+2*x+5) / ((x-1)^2*(x^2+x+1)).
(End)
Comments