cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263569 Number of distinct prime divisors p of 2*n such that lpf(2*n - p) = p, where lpf = least prime factor (A020639).

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4
Offset: 1

Views

Author

Gionata Neri, Oct 21 2015

Keywords

Comments

a(n) gives the number of times 2*n occurs in A061228.

Examples

			a(10) = 1 since the distinct prime divisors of 2*10 = 20 are 2 and 5, A020639(20 - 2) = 2 and A020639(20 - 5) = 3, so only prime 2 is to be considered.
a(15) = 3 since the distinct prime divisors of 2*15 = 30 are 2, 3 and 5, A020639(30 - 2) = 2 and A020639(30 - 3) = 3 and A020639(30 - 5) = 5, so all three prime 2, 3 and 5 are to be considered.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[First /@ FactorInteger[2 n], FactorInteger[2 n - #][[1, 1]] == # &]; Length /@ Table[f@ n, {n, 2, 105}] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    a(n) = {my(f=factor(2*n)); sum(k=1, #f~, p=f[k,1]; p == factor(2*n-p)[1,1]);} \\ Michel Marcus, Oct 31 2015