A263571 Expansion of f(x^2, x^2) * f(x, x^5) in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 2, 2, 0, 1, 0, 2, 3, 2, 2, 0, 0, 2, 0, 0, 3, 0, 4, 2, 0, 1, 0, 4, 2, 0, 2, 0, 0, 2, 0, 0, 2, 3, 2, 2, 0, 2, 0, 2, 3, 2, 2, 0, 0, 0, 0, 0, 4, 0, 2, 4, 0, 2, 0, 2, 1, 0, 6, 0, 0, 0, 0, 0, 2, 3, 2, 2, 0, 0, 0, 2, 4, 4, 2, 0, 0, 2, 0, 0, 2, 0, 0, 4, 0, 1, 0
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 2*x^3 + x^5 + 2*x^7 + 3*x^8 + 2*x^9 + 2*x^10 + ... G.f. = q + q^4 + 2*q^7 + 2*q^10 + q^16 + 2*q^22 + 3*q^25 + 2*q^28 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 1}, Sum[ KroneckerSymbol[ 2, d] KroneckerSymbol[ -3, m/d], {d, Divisors[ m]}]]]; a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 3, 0, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)] / (2^(1/2) x^(3/8)), {x, 0, n}];
-
PARI
{a(n) = my(m); if( n<0, 0, m = 3*n + 1; sumdiv( m, d, kronecker( 2, d) * kronecker( -3, m/d)))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A)^4 * eta(x^12 + A) / (eta(x + A) * eta(x^8 + A)^2), n))};
Formula
Expansion of chi(x) * phi(x^2) * psi(-x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/3) * eta(q^3) * eta(q^4)^4 * eta(q^12) / (eta(q) * eta(q^6) * eta(q^8)^2) in powers of q.
a(n) = b(3*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 7 (mod 24), b(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), b(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 24^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263577.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Dec 28 2023
Comments