A263574 Beatty sequence for 1/sqrt(3) - log(phi)/3575 where phi is the golden ratio, A001622.
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43
Offset: 0
Keywords
Examples
For n=9, floor(9*(0.577215664483)) = floor(5.194940980347) = 5.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..100000
- Xavier Gourdon and Pascal Sebah, Collection of formulas for Euler's constant,Euler's constant.
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant.
- Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant Approximations.
Crossrefs
Programs
-
Magma
phi:= (1+Sqrt(5))/2; [Floor(n*(1/Sqrt(3) - Log(phi)/3575)): n in [0..100]]; // G. C. Greubel, Sep 05 2018
-
Mathematica
Table[Floor[n (1/Sqrt@ 3 - Log[GoldenRatio]/3575)], {n, 0, 75}] (* Michael De Vlieger, Nov 12 2015 *)
-
PARI
{phi = (1+sqrt(5))/2}; vector(100, n, n--; floor(n*(1/sqrt(3) - log(phi)/3575))) \\ G. C. Greubel, Sep 05 2018
-
Python
from sympy import floor, log, sqrt for n in range(0,101):print(floor(n*(1/sqrt(3)-log(1/2+sqrt(5)/2)/3575)),end=', ')
Formula
a(n) = floor(n*(1/sqrt(3) - log(phi)/3575)).
a(n) = A038128(n) for n < 58628.
Comments