cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263575 Stirling transform of Lucas numbers (A000032).

Original entry on oeis.org

2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
    Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}]

Formula

a(n) = Sum_{k=0..n} A000032(k)*Stirling2(n,k).
Let phi = (1+sqrt(5))/2.
a(n) = B_n(phi)+B_n(1-phi), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = a(n) + A263576*sqrt(5).
E.g.f.: exp((exp(x)-1)*phi)+exp((exp(x)-1)*(1-phi)).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000032(n).
G.f.: Sum_{j>=0} Lucas(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019