cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263615 Partial sums of A263614 starting at n=2.

Original entry on oeis.org

2, 4, 8, 12, 20, 28, 44, 59, 89, 115, 167, 209, 293, 357, 485, 578, 764, 894, 1154, 1330, 1682, 1914, 2378, 2677, 3275, 3653, 4409, 4879, 5819, 6395, 7547, 8244, 9638, 10472, 12140, 13128, 15104, 16264, 18584, 19935, 22637, 24199, 27323, 29117, 32705, 34753, 38849, 41174, 45824, 48450
Offset: 2

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Crossrefs

Cf. A263614.

Programs

  • Mathematica
    LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{2,4,8,12,20,28,44,59,89},50] (* Harvey P. Dale, Feb 07 2024 *)
  • PARI
    a(n) = (2*n*(3*n^3-14*n^2+147*n+272)+(4*n^3-30*n^2+128*n-27)*(-1)^n-741)/768 \\ Colin Barker, Oct 26 2015
    
  • PARI
    Vec(x^2*(x^7-4*x^5-4*x^4+4*x^3+4*x^2-2*x-2)/((x-1)^5*(x+1)^4) + O(x^100)) \\ Colin Barker, Oct 26 2015

Formula

From Colin Barker, Oct 26 2015: (Start)
a(n) = (2*n*(3*n^3-14*n^2+147*n+272)+(4*n^3-30*n^2+128*n-27)*(-1)^n-741)/768.
G.f.: x^2*(x^7-4*x^5-4*x^4+4*x^3+4*x^2-2*x-2) / ((x-1)^5*(x+1)^4).
(End)