A263626 Number of inequivalent self-complementary Seidel matrices of order n.
1, 1, 0, 1, 1, 4, 0, 19, 10, 360, 0, 25112, 720, 6975976, 0, 7030565576, 703760, 25473667704064, 0, 333377175390634880, 9168331776, 15881995583375102901824, 0, 2775171714758797872451279104, 1601371799340544, 1790676527377592615808645709379328, 0, 4291738728096066980970104665682237420544, 3837878966366932639744, 38401679870039848205115101680007123726281532416, 0
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, Mar 01 2021: (Start) For n = 3, we have the following A000088(3) = 4 unlabeled graphs on 3 nodes: (1) o (2) o (3) o (4) o / \ / / \ o o o o o o o-- o Graphs (1) and (2) form one equivalence class and graphs (3) and (4) form another equivalence class (under the Seidel-Mallows-Sloane "switching" equivalence relation). The complement of (1) is (4) and the complement of (2) is (3), so there are no self-complementary classes; i.e., a(3) = 0. (Here, the number of equivalence classes is A002854(3) = 2.) For n = 4, the A000088(4) = 11 unlabeled graphs are listed in Mallows and Sloane (1975). There are A002854(4) = 3 equivalence classes, only one of which is self-complementary: (1) o o (2) o -- o (3) o--o (4) o o (5) o--o | | | | /| | /| o o o o o--o o--o o--o Thus, a(4) = 1. (End)
Links
- G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi, Equiangular lines in Euclidean spaces, arXiv:1403.2155 [math.CO], 2014-2015.
- G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi, Equiangular lines in Euclidean spaces, Journal of Combinatorial Theory, Series A, 138 (2016), 208-235.
- C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math., 28 (1975), 876-880. (copy at N. J. A. Sloane's home page)
- Johan Jacob Seidel, Strongly regular graphs on L2-type and of triangular type, Nederl. Akad. Wet., Proc., Ser. A, 70 (1967), 188-196. (Zentralblatt 161 #20802)
- Johan Jacob Seidel, Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3, Linear Algebra and its Applications, 1(2) (1968), 281-298. (Zentralblatt 159 #25403)
- Tadeusz Sozański, Enumeration of weak isomorphism classes of signed graphs, J. Graph Theory 4 (1980), no. 2, 127-144. (Zentralblatt 434 #05059)
- Jacobus Hendricus van Lint and Johan Jacob Seidel, Equilateral point sets in elliptic geometryNederl. Akad. Wetensch. Proc. Ser. A, 69 (= Indag. Math., 28) (1966), 335-348. (Zentralblatt 138 #41702)
- Wikipedia, Seidel adjacency matrix.
Programs
-
PARI
a(n)={local(p=vector(n)); my(S=0, J() = sum(j=0, floor((n-1)/2), p[2*j+1]), I1() = sum(i=1, n, p[i]) - if(J() == 0, 0, 1), I2() = (sum(i=1, n, sum(j=1, n, p[i]*p[j]*gcd(i,j))) - J())/2, M2() = sum(i=1, n, if(1 == (i%2), p[i], 0))*(abs((p[1]-1)*(p[1]-2)) + sum(j=2, n, if(0!=(j%4), p[j], 0))), M() = I2() - I1(), inc()=!forstep(i=n, 1, -1, p[i]
n, p[i]=n); next(2))); t==n && S+=if(M2() == 0, 2^M()/prod(i=1, n, i^p[i]*p[i]!), 0)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 02 2021
Formula
From Petros Hadjicostas, Mar 01 2021: (Start)
a(n) = 0 for 3 == n mod 4 (see the references).
Conjecture (due to Peter Luschny): a(n) = Sum_{k=0}^{n*(n-1)/2} (-1)^k*A341941(n,k) = [o.g.f. of n-th row of A341941](x=-1).
a(n) = Sum_{p in M2(n)} 2^(I2(p) - I1(p))/f(p), where
p = (p[1], ..., p[n]) is a partition of n written in frequency or multiplicity notation with p[i] >= 0 for i = 1..n and Sum_{i=1..n} i*p[i] = n;
M2(n) is the set of all partitions p of n with either (a) p[i] = 0 for all odd i or (b) p[1] = 1 or 2, and p[i] = 0 for i >= 2 with 0 <> (i mod 4);
f(p) = Product_{i=1..n} p[i]!*i^p[i];
J(p) = Sum_{j=1..floor((n-1)/2)} p[2*j+1];
I1(p) = Sum_{i=1..n} p[i] - if(J(p) == 0, 0, 1); and
I2(p) = (Sum_{1 <= i, j <= n} p[i]*p[j]*gcd(i,j) - J(p))/2.
(This is modification of formula (20) in Theorem 2 (p. 139) in Sozański (1980).)
Note that, if we take sum over all partitions of n, rather than just over M2(n), then we get A002854(n).
If, on the other hand, we consider Sum_{p in M1(n)} 2^I2(p)/f(p), where M1(n) is the set of all partitions p of n with p[1] in {0,1} and p[i] = 0 for i >= 2 with 0 <> (i mod 4), then we get A000171(n).
Finally, if we consider Sum_{p} 2^I2(p)/f(p) over all partitions p of n, then we get A000088(n). (End)
Extensions
Terms a(13) to a(21) copied from Table I (p. 140) in Sozański (1980). - Petros Hadjicostas, Feb 27 2021
Name edited by and terms a(22) to a(31) from Petros Hadjicostas, Mar 01 2021
Comments