A263633 Irregular triangle read by rows: row n gives coefficients of n-th ordinary Bell polynomial B_n(x_1, x_2, ...) with monomials sorted into graded lexicographic order.
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 4, 6, 3, 6, 1, 2, 2, 1, 1, 1, 6, 5, 10, 4, 12, 4, 3, 6, 3, 3, 2, 2, 2, 1, 1, 7, 6, 15, 5, 20, 10, 4, 12, 6, 12, 1, 3, 6, 6, 3, 3, 2, 2, 2, 1, 1, 1, 8, 7, 21, 6, 30, 20, 5, 20, 10, 30, 5, 4, 12, 12, 12, 12, 4, 3, 6, 6, 3, 3, 6, 1, 2, 2, 2, 2, 1
Offset: 1
Examples
The first few polynomials are: 1, x[1] 2, x[1]^2 + x[2] 3, x[1]^3 + 2*x[1]*x[2] + x[3] 4, x[1]^4 + 3*x[1]^2*x[2] + 2*x[1]*x[3] + x[2]^2 + x[4] 5, x[1]^5 + 4*x[1]^3*x[2] + 3*x[1]^2*x[3] + 3*x[1]*x[2]^2 + 2*x[1]*x[4] + 2*x[2]*x[3] + x[5] 6, x[1]^6 + 5*x[1]^4*x[2] + 4*x[1]^3*x[3] + 6*x[1]^2*x[2]^2 + 3*x[1]^2*x[4] + 6*x[1]*x[2]*x[3] + x[2]^3 + 2*x[1]*x[5] + 2*x[2]*x[4] + x[3]^2 + x[6] ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 136, 309.
Links
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015; In the Realm of Shadows: Umbral inverses and associahedra, noncrossing partitions, symmetric polynomials, and similarity transforms, 2019; Appells and Roses: Newton, Leibniz, Euler, Riemann and Symmetric Polynomials, 2020.
- D. Dugger, A Geometric Introduction to K-Theory.
- Luis Verde-Star, Representation of symmetric functions as Gram determinants, Advances in Mathematics, 1 Dec 1998, Vol. 140(1):128-143.
- Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
Crossrefs
Programs
-
Maple
with(Groebner): A263633_row := proc(n) local EE,t1,t2,Q,F,X,p,L,q,c,r; EE := add(x[i]*t^i, i=1..2*n); t1 := 1/(1-EE): t2 := series(t1, t, 2*n): Q := k -> expand(coeff(t2, t, k)); X := seq(x[i], i=1..n); p := Q(n); L := []; while p <> 0 do r := LeadingTerm(p, grlex(X)); c := r[1]; q := r[2]; p := p - c*q; L := [op(L), c]; od; L end: for n from 1 to 8 do A263633_row(n) od; # Program expanded by Peter Luschny, Sep 26 2016
Formula
G.f.: 1/(1-Sum_{i >= 1} x_i*t^i) = 1 + Sum_{n >= 1} B_n(x_1, x_2,...)*t^n. [Comtet, p. 136, Eq. [3o'].]
Extensions
More terms and some edits by Peter Luschny, Sep 26 2016
Comments