cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A263637 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 9, 11, 19, 27, 44, 65, 104, 155, 246, 370, 582, 882, 1379, 2100, 3270, 4997, 7758, 11885, 18413, 28258, 43714, 67171, 103801, 159643, 246515, 379373, 585502, 901460, 1390734, 2141907, 3303555, 5089046, 7847557, 12090913, 18642253, 28725828
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Examples

			Some solutions for n=6:
..2....1....0....0....0....1....0....1....1....1....1....0....0....2....2....2
..1....0....3....2....3....3....2....0....2....3....2....2....3....0....1....0
..0....4....1....1....2....0....1....4....0....0....0....1....1....3....0....4
..4....3....5....5....1....4....4....2....4....5....5....5....4....1....5....1
..3....2....2....3....5....2....3....5....3....2....3....4....2....5....4....5
..5....5....4....4....4....5....5....3....5....4....4....3....5....4....3....3
		

Crossrefs

Column 2 of A263643.

Formula

Empirical: a(n) = 2*a(n-2) + a(n-3) - a(n-5) for n>9.
Empirical g.f.: x*(1 + x - x^2)*(1 + x + 3*x^2 + 2*x^3 - x^5 - x^6) / (1 - 2*x^2 - x^3 + x^5). - Colin Barker, Jan 02 2019

A263638 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 17, 41, 75, 156, 340, 738, 1567, 3327, 7136, 15258, 32589, 69621, 148780, 317987, 679467, 1451887, 3102670, 6630039, 14167934, 30275260, 64695775, 138248719, 295425310, 631295545, 1349022959, 2882734510, 6160146104
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Comments

Column 3 of A263643.

Examples

			Some solutions for n=6
..2....2....1....2....3....3....0....1....1....3....0....2....1....1....2....1
..0....3....0....4....1....0....4....3....3....1....4....3....0....4....4....4
..4....0....5....0....0....5....1....0....2....0....2....0....5....2....1....0
..1....5....3....3....5....1....5....4....0....4....5....4....2....0....0....3
..5....1....2....1....2....4....2....2....5....2....1....1....4....5....5....2
..3....4....4....5....4....2....3....5....4....5....3....5....3....3....3....5
		

Crossrefs

Cf. A263643.

Formula

Empirical: a(n) = 3*a(n-2) +2*a(n-3) +3*a(n-4) +2*a(n-5) -2*a(n-6) -6*a(n-7) +2*a(n-8) -4*a(n-9) -2*a(n-10) +3*a(n-11) -2*a(n-12) +a(n-14) for n>19

A263639 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 17, 70, 226, 538, 1417, 3734, 10564, 29274, 81109, 219924, 603970, 1654203, 4552899, 12482279, 34293113, 93987924, 258097242, 707931841, 1943681720, 5332252281, 14636363836, 40158264369, 110218824475, 302439248237
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Comments

Column 4 of A263643.

Examples

			Some solutions for n=6
..4....1....4....3....1....0....1....3....3....4....3....1....0....4....4....1
..2....0....3....5....3....5....2....0....2....2....4....5....5....5....5....4
..0....5....1....2....2....3....0....5....4....5....1....3....1....3....0....0
..5....4....0....1....4....4....5....1....0....1....2....4....3....0....3....5
..1....2....5....0....0....2....3....4....5....0....0....0....2....2....2....2
..3....3....2....4....5....1....4....2....1....3....5....2....4....1....1....3
		

Crossrefs

Cf. A263643.

Formula

Empirical: a(n) = 4*a(n-2) +4*a(n-3) +8*a(n-4) +14*a(n-5) +25*a(n-6) +11*a(n-7) -33*a(n-8) -116*a(n-9) +83*a(n-10) -207*a(n-11) -28*a(n-12) -212*a(n-13) +65*a(n-14) +51*a(n-15) -189*a(n-16) +21*a(n-17) +106*a(n-18) +428*a(n-19) -114*a(n-20) +589*a(n-21) +7*a(n-22) -244*a(n-23) +89*a(n-24) +273*a(n-25) -111*a(n-26) -557*a(n-27) +393*a(n-28) +42*a(n-29) -246*a(n-30) -a(n-31) +110*a(n-32) +23*a(n-33) -149*a(n-34) +13*a(n-35) +50*a(n-36) -3*a(n-37) -10*a(n-38) -2*a(n-39) +5*a(n-40) -2*a(n-41) -4*a(n-42) +a(n-43) +4*a(n-44) -a(n-46) for n>53

A263640 Number of length n arrays of permutations of 0..n-1 with each element moved by -5 to 5 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 1389, 4255, 13529, 42700, 141128, 479893, 1639260, 5542549, 18548087, 62017274, 207179998, 694864003, 2330691027, 7821792735, 26241990473, 87992594947, 295032591603, 989183937210, 3317043061446, 11123439095051
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Comments

Column 5 of A263643.

Examples

			Some solutions for n=6
..1....5....5....2....0....4....4....3....5....0....1....3....5....4....4....1
..4....2....3....3....4....0....2....2....3....5....5....2....4....3....5....0
..3....3....1....1....3....5....5....4....2....4....3....0....3....2....3....5
..5....1....0....0....2....3....3....1....4....3....0....4....2....1....1....3
..2....4....4....5....1....2....0....5....1....2....4....1....0....0....0....2
..0....0....2....4....5....1....1....0....0....1....2....5....1....5....2....4
		

Crossrefs

Cf. A263643.

A263641 Number of length n arrays of permutations of 0..n-1 with each element moved by -6 to 6 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 2017, 9673, 36321, 138420, 511748, 1952716, 7596839, 30518737, 122761971, 492354214, 1954807815, 7749597167, 30587342598, 120939248751, 478688493595, 1897205025687, 7520593309740, 29825363773570, 118218233684104
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Comments

Column 6 of A263643.

Examples

			Some solutions for n=6
..5....5....5....0....2....4....3....5....1....4....2....1....1....4....2....5
..2....4....3....5....4....5....4....1....5....3....5....5....5....0....3....0
..3....2....0....2....0....1....0....4....4....1....4....0....3....5....1....3
..1....0....2....4....3....3....2....2....3....2....3....4....4....1....4....1
..4....3....1....1....1....0....1....3....0....0....0....3....2....3....0....4
..0....1....4....3....5....2....5....0....2....5....1....2....0....2....5....2
		

Crossrefs

Cf. A263643.

A263642 Number of length n arrays of permutations of 0..n-1 with each element moved by -7 to 7 places and with no two consecutive increases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 2017, 13358, 74678, 335720, 1500041, 6440272, 28038374, 123298684, 556103807, 2564034001, 11893926843, 55032401086, 253092976011, 1160780168755, 5299878003384, 24174899648334, 110233336977738
Offset: 1

Views

Author

R. H. Hardin, Oct 22 2015

Keywords

Comments

Column 7 of A263643.

Examples

			Some solutions for n=6
..4....1....5....1....5....5....3....5....2....1....1....2....4....4....2....2
..5....0....3....5....1....0....4....1....3....4....4....5....0....2....1....5
..3....4....2....4....2....4....2....4....1....2....3....4....3....5....5....3
..2....3....0....3....0....1....5....0....4....0....0....3....1....3....0....4
..1....5....4....2....4....3....0....3....0....5....5....0....5....1....4....0
..0....2....1....0....3....2....1....2....5....3....2....1....2....0....3....1
		

Crossrefs

Cf. A263643.
Showing 1-6 of 6 results.