A263650 A variation on A098550 (the Yellowstone permutation): a(n)=n for 1 <= n <= 3, a(4)=5; otherwise a(n) = smallest number not yet appearing in the sequence which is coprime to a(n-1) and not coprime to a(n-2).
1, 2, 3, 5, 6, 25, 4, 15, 8, 9, 10, 21, 16, 7, 12, 35, 18, 49, 20, 63, 22, 27, 11, 24, 55, 14, 33, 26, 45, 13, 30, 91, 32, 39, 28, 51, 38, 17, 19, 34, 57, 40, 69, 44, 23, 36, 115, 42, 65, 46, 75, 52, 81, 50, 87, 56, 29, 48, 145, 54, 85, 58, 95, 62, 105, 31, 60, 217, 64
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015.
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.6.7
Programs
-
Mathematica
a[n_] := a[n] = If[n <= 4, {1, 2, 3, 5}[[n]], For[k = 4, True, k++, If[CoprimeQ[k, a[n-1]] && !CoprimeQ[k, a[n-2]], If[FreeQ[Array[a, n-1], k], Return[k]]]]]; Array[a, 100] (* Jean-François Alcover, Feb 11 2019 *)
Extensions
Corrected and extended by Jean-François Alcover, Feb 11 2019
Comments