cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263685 Number of inequivalent placements of n nonattacking rooks on n X n board up to rotations of the board.

Original entry on oeis.org

1, 1, 2, 9, 33, 192, 1272, 10182, 90822, 908160, 9980160, 119761980, 1556766780, 21794734080, 326918753280, 5230700053320, 88921859605320, 1600593472880640, 30411275148656640, 608225502973147920, 12772735543856347920, 281000181964839321600, 6463004184741681561600
Offset: 1

Views

Author

Max Alekseyev, Oct 31 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (r=Mod[n, 4]; m=(n-r)/4; q=Quotient[n, 2]; n! + q!*2^q + 2*If[r <= 1, (2m)!/m!, 0])/4; Array[a, 23] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    { a(n) = ( n! + (n\2)! * 2^(n\2) + 2*if(n%4<=1, (2*(n\4))!/(n\4)! ) )/4; }

Formula

For n=4m or n=4m+1, a(n) = (n! + (2m)!*2^(2*m) + (2m)!/m!)/4.
For n=4m+2 or n=4m+3, a(n) = (n! + (2m+1)!*2^(2*m+1))/4.
a(n) = 2*A000903(n) - A000900(n) - A000902(floor(n/2)).
For n>1, a(n) = 2*A000903(n) - A000085(n)/2.
a(n) = (P(n)+G(n)+2*R(n))/4, where P,G,R are defined in Robinson (1976). See also Maple code in A000903.