A263685 Number of inequivalent placements of n nonattacking rooks on n X n board up to rotations of the board.
1, 1, 2, 9, 33, 192, 1272, 10182, 90822, 908160, 9980160, 119761980, 1556766780, 21794734080, 326918753280, 5230700053320, 88921859605320, 1600593472880640, 30411275148656640, 608225502973147920, 12772735543856347920, 281000181964839321600, 6463004184741681561600
Offset: 1
Links
- R. W. Robinson, Counting arrangements of bishops, Lect. Notes Math. 560 (1976), 198-214.
Programs
-
Mathematica
a[n_] := (r=Mod[n, 4]; m=(n-r)/4; q=Quotient[n, 2]; n! + q!*2^q + 2*If[r <= 1, (2m)!/m!, 0])/4; Array[a, 23] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
PARI
{ a(n) = ( n! + (n\2)! * 2^(n\2) + 2*if(n%4<=1, (2*(n\4))!/(n\4)! ) )/4; }
Formula
For n=4m or n=4m+1, a(n) = (n! + (2m)!*2^(2*m) + (2m)!/m!)/4.
For n=4m+2 or n=4m+3, a(n) = (n! + (2m+1)!*2^(2*m+1))/4.
a(n) = (P(n)+G(n)+2*R(n))/4, where P,G,R are defined in Robinson (1976). See also Maple code in A000903.