cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263687 b(n) in (sqrt(2))_n = b(n) + c(n)*sqrt(2), where (x)_n is the Pochhammer symbol, b(n) and c(n) are integers.

Original entry on oeis.org

1, 0, 2, 6, 26, 140, 896, 6636, 55804, 525168, 5468008, 62403880, 774616696, 10390122288, 149757486368, 2308301709840, 37887797229968, 659770432834688, 12148923787132832, 235858218326093664, 4814800618608693664, 103104123746671427520, 2310978427407268450048
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 23 2015

Keywords

Comments

The Pochhammer symbol (sqrt(2))_n = Gamma(n + sqrt(2))/Gamma(sqrt(2)) = sqrt(2)*(1 + sqrt(2))*(2 + sqrt(2))*...*(n - 1 + sqrt(2)).
(sqrt(2))_n = a(n) + A263688(n)*sqrt(2).

Examples

			For n = 4, (sqrt(2))_4 = sqrt(2)*(1 + sqrt(2))*(2 + sqrt(2))*(3 + sqrt(2)) = 26 + 18*sqrt(2), so a(4) = 26.
G.f. = 1 + 2*x^2 + 6*x^3 + 26*x^4 + 140*x^5 + 896*x^6 + 6636*x^7 + 55804*x^8 + ...
		

Crossrefs

Cf. A263688.

Programs

  • Mathematica
    Expand@Table[(Pochhammer[Sqrt[2], n] + Pochhammer[-Sqrt[2], n])/2, {n, 0, 22}]
  • PARI
    {a(n) = if( n<0, 0, real(prod(k=0, n-1, quadgen(8) + k)))}; /* Michael Somos, Oct 23 2015 */

Formula

a(n) = ((sqrt(2))_n + (-sqrt(2))_n)/2.
E.g.f.: (1/(1-x)^sqrt(2)+(1-x)^sqrt(2))/2 = cosh(sqrt(2)*log(1-x)).
Recurrence: a(0) = 1, a(1) = 0, a(n+2) = (2*n+1)*a(n+1) + (2-n^2)*a(n).
a(n) ~ exp(-n)*n^(n+sqrt(2)-1/2)*sqrt(Pi/2)/Gamma(sqrt(2)).
0 = a(n)*(+7*a(n+1) - a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1)*(+7*a(n+1) + 6*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Oct 23 2015
From Benedict W. J. Irwin, Oct 14 2016: (Start)
a(n) = (-1)^n*(binomial(-sqrt(2), n) + binomial(sqrt(2), n))*n!/2.
Conjecture: a(n) = (-1)^n * Sum_{k=0..n/2} Stirling1(n,2*k)*2^k.
(End)