A263688 c(n) in (sqrt(2))_n = b(n) + c(n)*sqrt(2), where (x)_n is the Pochhammer symbol, b(n) and c(n) are integers.
0, 1, 1, 4, 18, 98, 630, 4676, 39368, 370748, 3861900, 44087008, 547360968, 7342948312, 105848450344, 1631635791184, 26782838577600, 466413214471568, 8588795078851344, 166747235206457024, 3404055687248777120, 72895914363584236064, 1633918325381940384864
Offset: 0
Keywords
Examples
For n = 4, (sqrt(2))_4 = sqrt(2)*(1 + sqrt(2))*(2 + sqrt(2))*(3 + sqrt(2)) = 26 + 18*sqrt(2), so a(4) = 18. G.f. = x + x^2 + 4*x^3 + 18*x^4 + 98*x^5 + 630*x^6 + 4676*x^7 + 39368*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445
- Eric Weisstein's MathWorld, Pochhammer Symbol.
Crossrefs
Cf. A263687.
Programs
-
Mathematica
Expand@Table[(Pochhammer[Sqrt[2], n] - Pochhammer[-Sqrt[2], n])/(2 Sqrt[2]), {n, 0, 22}]
-
PARI
{a(n) = if( n<0, 0, imag( prod(k=0, n-1, quadgen(8) + k)))}; /* Michael Somos, Oct 23 2015 */
Formula
a(n) = ((sqrt(2))_n - (-sqrt(2))_n)/(2*sqrt(2)).
E.g.f.: (1/(1-x)^sqrt(2)-(1-x)^sqrt(2))/(2*sqrt(2)) = -sinh(sqrt(2)*log(1-x))/sqrt(2).
D-finite with recurrence: a(0) = 0, a(1) = 1, a(n+2) = (2*n+1)*a(n+1) + (2-n^2)*a(n).
a(n) ~ exp(-n)*n^(n+sqrt(2)-1/2)*sqrt(Pi)/(2*Gamma(sqrt(2))).
0 = a(n)*(+7*a(n+1) - a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1)*(+7*a(n+1) + 6*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Oct 23 2015
Comments