cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263688 c(n) in (sqrt(2))_n = b(n) + c(n)*sqrt(2), where (x)_n is the Pochhammer symbol, b(n) and c(n) are integers.

Original entry on oeis.org

0, 1, 1, 4, 18, 98, 630, 4676, 39368, 370748, 3861900, 44087008, 547360968, 7342948312, 105848450344, 1631635791184, 26782838577600, 466413214471568, 8588795078851344, 166747235206457024, 3404055687248777120, 72895914363584236064, 1633918325381940384864
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 23 2015

Keywords

Comments

The Pochhammer symbol (sqrt(2))_n = Gamma(n + sqrt(2))/Gamma(sqrt(2)) = sqrt(2)*(1 + sqrt(2))*(2 + sqrt(2))*...*(n - 1 + sqrt(2)).
(sqrt(2))_n = A263687(n) + a(n)*sqrt(2).

Examples

			For n = 4, (sqrt(2))_4 = sqrt(2)*(1 + sqrt(2))*(2 + sqrt(2))*(3 + sqrt(2)) = 26 + 18*sqrt(2), so a(4) = 18.
G.f. = x + x^2 + 4*x^3 + 18*x^4 + 98*x^5 + 630*x^6 + 4676*x^7 + 39368*x^8 + ...
		

Crossrefs

Cf. A263687.

Programs

  • Mathematica
    Expand@Table[(Pochhammer[Sqrt[2], n] - Pochhammer[-Sqrt[2], n])/(2 Sqrt[2]), {n, 0, 22}]
  • PARI
    {a(n) = if( n<0, 0, imag( prod(k=0, n-1, quadgen(8) + k)))}; /* Michael Somos, Oct 23 2015 */

Formula

a(n) = ((sqrt(2))_n - (-sqrt(2))_n)/(2*sqrt(2)).
E.g.f.: (1/(1-x)^sqrt(2)-(1-x)^sqrt(2))/(2*sqrt(2)) = -sinh(sqrt(2)*log(1-x))/sqrt(2).
D-finite with recurrence: a(0) = 0, a(1) = 1, a(n+2) = (2*n+1)*a(n+1) + (2-n^2)*a(n).
a(n) ~ exp(-n)*n^(n+sqrt(2)-1/2)*sqrt(Pi)/(2*Gamma(sqrt(2))).
0 = a(n)*(+7*a(n+1) - a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1)*(+7*a(n+1) + 6*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Oct 23 2015