cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A263696 Number of length n arrays of permutations of 0..n-1 with each element moved by -n to n places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 288, 456, 768, 1508, 3434, 7560, 16024, 31872, 61704, 122464, 246296, 500506, 1015010, 2041372, 4098824, 8224718, 16535378, 33298104, 67036986, 134932118, 271438490, 545959366, 1098340012, 2209778140
Offset: 0

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Examples

			Some solutions for n=7
..3....4....4....6....0....0....4....0....4....0....0....6....1....2....1....1
..0....6....0....5....3....1....3....2....0....1....4....5....0....6....0....3
..2....2....1....4....1....2....6....1....3....3....1....4....3....5....3....0
..1....5....2....2....4....4....5....4....1....2....3....2....4....4....4....2
..4....1....5....0....2....6....2....5....5....5....5....0....5....3....6....4
..5....3....6....3....5....3....1....3....2....6....2....1....2....1....2....6
..6....0....3....1....6....5....0....6....6....4....6....3....6....0....5....5
		

Crossrefs

Diagonal of A263703.
Cf. A333833.

Extensions

a(0), a(23)-a(29) from Alois P. Heinz, Apr 08 2020

A263697 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 14, 31, 56, 104, 208, 418, 873, 1772, 3545, 7103, 14180, 28572, 57620, 116055, 233735, 469754, 944670, 1900425, 3823544, 7695342, 15483113, 31150656, 62671350, 126083545, 253679744, 510398235, 1026910104, 2066113688, 4156885969
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 2 of A263703.

Examples

			Some solutions for n=7
..1....0....1....0....0....1....0....1....0....1....0....0....2....1....1....0
..0....1....0....1....3....0....1....0....3....0....3....1....0....3....0....1
..3....3....2....4....1....2....3....2....1....4....2....3....3....0....2....4
..2....2....4....2....5....4....5....3....4....2....1....2....1....4....4....5
..5....6....5....3....2....6....2....6....2....3....4....5....4....2....3....2
..6....4....3....6....6....3....6....4....6....5....5....6....5....5....5....3
..4....5....6....5....4....5....4....5....5....6....6....4....6....6....6....6
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19)

A263698 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 78, 110, 169, 301, 616, 1373, 2908, 5908, 11544, 22644, 45460, 91977, 186645, 376625, 756105, 1518054, 3049762, 6137766, 12359571, 24876504, 50054780, 100682624, 202531226, 407477585, 819858684, 1649639041, 3319062167
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 3 of A263703.

Examples

			Some solutions for n=7
..0....0....0....3....2....1....1....0....0....2....1....0....0....1....1....1
..1....1....1....0....1....3....4....1....1....0....0....2....1....0....0....0
..4....2....2....1....0....0....0....4....3....1....4....1....3....3....4....3
..2....3....3....2....3....4....2....5....5....4....2....3....2....2....2....2
..6....5....4....5....4....2....3....2....4....3....6....4....5....6....6....6
..5....6....6....4....6....6....6....3....2....5....5....6....4....5....3....4
..3....4....5....6....5....5....5....6....6....6....3....5....6....4....5....5
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19) for n>27

A263699 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 168, 204, 348, 696, 1601, 3476, 7244, 14048, 27164, 54300, 109741, 223641, 452621, 908389, 1822758, 3657710, 7359642, 14825163, 29845108, 60064056, 120806672, 242986234, 488854773, 983578792, 1979138437, 3982088115
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 4 of A263703.

Examples

			Some solutions for n=7
..1....1....0....3....0....1....0....0....2....1....0....0....2....1....1....3
..0....0....3....1....4....0....4....1....0....2....1....2....3....3....0....0
..4....3....1....0....1....4....1....3....1....0....3....1....0....0....2....2
..2....2....4....2....2....3....2....5....3....3....2....4....1....4....3....1
..6....5....2....4....5....2....3....6....5....4....4....5....4....2....6....4
..3....4....6....5....3....5....6....4....6....5....5....6....5....5....4....5
..5....6....5....6....6....6....5....2....4....6....6....3....6....6....5....6
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19) for n>27

A263700 Number of length n arrays of permutations of 0..n-1 with each element moved by -5 to 5 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 288, 276, 374, 732, 1673, 3692, 7784, 15360, 29532, 58532, 118037, 240313, 487649, 980297, 1966710, 3945522, 7932930, 15978403, 32172852, 64755796, 130259920, 261986262, 527049589, 1060407528, 2133708989, 4293197371
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 5 of A263703.

Examples

			Some solutions for n=7
..1....0....4....2....4....5....0....0....1....5....0....5....0....1....5....0
..0....1....6....0....0....1....1....1....0....2....3....6....1....0....6....1
..2....4....5....1....3....4....4....2....4....1....1....2....4....4....2....4
..3....5....2....4....1....0....2....5....2....0....5....4....2....2....3....5
..5....2....3....5....5....3....5....4....6....4....4....0....5....6....0....3
..6....3....0....6....2....2....3....3....5....3....6....1....6....3....1....6
..4....6....1....3....6....6....6....6....3....6....2....3....3....5....4....2
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19) for n>29

A263701 Number of length n arrays of permutations of 0..n-1 with each element moved by -6 to 6 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 288, 456, 488, 754, 1699, 3744, 7940, 15748, 30396, 60160, 120944, 246040, 499256, 1004336, 2016168, 4044432, 8130660, 16373500, 32966620, 66358420, 133489108, 268489288, 540125980, 1086691764, 2186585680, 4399583284
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 6 of A263703.

Examples

			Some solutions for n=7
..2....0....6....6....0....4....1....4....1....1....3....4....1....6....6....6
..6....4....4....3....1....6....0....0....0....0....6....0....0....4....3....4
..3....1....2....5....4....3....4....1....4....4....5....1....3....5....5....5
..5....5....5....2....3....5....3....2....3....3....2....3....4....1....2....3
..4....3....3....4....5....2....6....3....2....5....4....5....6....3....1....1
..1....6....1....0....6....1....2....5....6....2....1....2....5....2....4....0
..0....2....0....1....2....0....5....6....5....6....0....6....2....0....0....2
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19) for n>31

A263702 Number of length n arrays of permutations of 0..n-1 with each element moved by -7 to 7 places and every three consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 288, 456, 768, 1002, 1759, 3766, 7984, 15880, 30712, 60880, 122308, 248493, 504104, 1014076, 2036337, 4085860, 8213550, 16539563, 33298322, 67024922, 134834240, 271198708, 545583481, 1097665701, 2208646386, 4443964256
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Column 7 of A263703.

Examples

			Some solutions for n=7
..0....2....4....1....0....6....2....0....0....5....1....6....3....0....3....6
..1....6....1....0....1....2....6....4....4....2....4....4....6....4....6....2
..2....5....0....4....3....3....5....3....3....1....5....5....2....1....4....5
..3....3....2....2....2....5....4....6....1....0....6....3....5....5....5....3
..5....1....3....5....4....1....3....2....2....3....2....1....1....3....1....4
..4....4....5....3....6....4....0....5....5....4....3....2....4....2....2....1
..6....0....6....6....5....0....1....1....6....6....0....0....0....6....0....0
		

Crossrefs

Cf. A263703.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-5) +2*a(n-6) +a(n-7) +5*a(n-8) -4*a(n-9) -3*a(n-10) -3*a(n-11) -4*a(n-12) -4*a(n-14) -a(n-15) +3*a(n-16) -a(n-17) +a(n-19) for n>33
Showing 1-7 of 7 results.