A263725 Smallest prime q > prime(n+3) such that the number p = prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2 + q^2 is also prime.
13, 17, 37, 31, 31, 37, 41, 41, 43, 47, 59, 61, 89, 79, 71, 79, 79, 89, 97, 109, 127, 107, 109, 109, 113, 139, 131, 139, 151, 149, 157, 157, 173, 181, 173, 191, 191, 193, 197, 223, 199, 211, 233, 239, 229, 233, 263, 257, 263, 271, 271, 277, 271, 281, 281, 293, 293, 311, 349, 317, 353, 331, 353, 353, 359, 419, 359, 419, 379, 419, 397, 401, 431, 409, 409, 433, 461, 443, 487, 449, 541, 487, 463, 569, 479, 467, 487, 491, 503
Offset: 2
Keywords
Examples
The primes 373 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2, 653 = 5^2 + 7^2 + 11^2 + 13^2 + 17^2, and 1997 = 7^2 + 11^2 + 13^2 + 17^2 + 37^2 lead to a(2) = 13, a(3) = 17, and a(4) = 37.
References
- W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988.
Links
- Wikipedia, Schinzel's Hypothesis H
Crossrefs
Cf. A263724.
Programs
-
Mathematica
Table[k = 4; While[! PrimeQ[Sum[Prime[n + j]^2, {j, 0, 3}] + Prime[n + k]^2], k++]; Prime[n + k], {n, 2, 90}]
Comments