A263737 Nonnegative integers that are the difference of two squares but not the sum of two squares.
3, 7, 11, 12, 15, 19, 21, 23, 24, 27, 28, 31, 33, 35, 39, 43, 44, 47, 48, 51, 55, 56, 57, 59, 60, 63, 67, 69, 71, 75, 76, 77, 79, 83, 84, 87, 88, 91, 92, 93, 95, 96, 99, 103, 105, 107, 108, 111, 112, 115, 119, 120, 123, 124, 127, 129, 131, 132, 133, 135, 139, 140
Offset: 1
Keywords
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
rs[n_] := Reduce[n == x^2 + y^2, {x, y}, Integers]; rd[n_] := Reduce[0 <= y <= x && n == x^2 - y^2, {x, y}, Integers]; Reap[Do[If[rs[n] == False && rd[n] =!= False, Sow[n]], {n, 0, 140}]][[2, 1]] (* Jean-François Alcover, Oct 26 2015 *)
-
Python
from itertools import count, islice from sympy import factorint def A263737_gen(): # generator of terms return filter(lambda n:n & 3 != 2 and any(p & 3 == 3 and e & 1 for p, e in factorint(n).items()),count(0)) A263737_list = list(islice(A263737_gen(),30)) # Chai Wah Wu, Jun 28 2022
Comments