cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263799 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 7, 3, 4, 4, 4, 7, 7, 4, 4, 5, 4, 14, 7, 14, 4, 5, 5, 5, 14, 17, 17, 14, 5, 5, 6, 5, 25, 18, 61, 18, 25, 5, 6, 6, 6, 25, 56, 130, 130, 56, 25, 6, 6, 7, 6, 41, 66, 494, 616, 494, 66, 41, 6, 7, 7, 7, 41, 218, 1435, 4991, 4991, 1435, 218, 41, 7, 7, 8, 7, 63, 272
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Table starts
.2.2..3...3.....4.......4........5.........5.........6..........6.........7
.2.2..3...3.....4.......4........5.........5.........6..........6.........7
.3.3..7...7....14......14.......25........25........41.........41........63
.3.3..7...7....17......18.......56........66.......218........272.......798
.4.4.14..17....61.....130......494......1435......4917......13962.....41366
.4.4.14..18...130.....616.....4991.....30130....185795....1022105...5241463
.5.5.25..56...494....4991....62904....760671...8468941...90476206.850301770
.5.5.25..66..1435...30130...760671..20141827.445862545.9910247963
.6.6.41.218..4917..185795..8468941.445862545
.6.6.41.272.13962.1022105.90476206

Examples

			Some solutions for n=5 k=4
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0
..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0
..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0
		

Crossrefs

Column 1 is A005578(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) -a(n-3)
k=2: a(n) = a(n-1) +a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7)
k=4: [order 19]
k=5: [order 37]
k=6: [order 83]